

#FullPhysiology

In Daily Practice

DCB and complex PCI: Functional assessment makes it easier

Prof. Antonio Maria Leone

M.D., Phd
Director of Diagnostic and Interventional Cardiology Unit
Fatebenefratelli Isola Tiberina Hospital- Gemelli Isola

Clinical Presentation

- Age: 48 y.o.
- Cardiovascular Risk Factors:

Hypertension

Former smoker

Family history of CAD

Past medical History:

GERD

New onset effort angina

Echo: normal EF, mild IM

Recent medical History:

Coronary CT: significant stenoses of LAD, D2 and IVP

Drugs: PPI, ARBs, Amlopidine

Coronary Artery Angiography

RCA LCx LAD

LAD

Coronary Artery Angiography

- ✓ Dual LAD anatomy: comparable vessels size
- ✓ Bifurcation lesion: Medina 0.1.1
- ✓ Bifurcation angle < 70°
 </p>
- ✓ Long and severe disease

How to perform PCI?

Single vs Double stent technique?

What is #FullPhysiology assessment

Epicardial disease assessment

- NHPR (≤0.89)
- cFFR (≤0.83)
- FFR (≤0.80)

Microvascular disease assessment

- IMR (>25)
- CFR (< 2.0)
- RRR (<2.0)*

*Resistive resistance ratio= $\frac{Trm*Pdr}{r}$

Vasomotor testing

Ach

Post PCI repeated assessment if applicable

First diagonal (D1)-Functional assessment

Epicardial Flow-limiting stenoses

LAD-Functional assessment

No-Epicardial Flow-limiting stenoses

Coronary Artery Angiography

- ✓ D1 physiological assessment: cFFR 0.82→ flow-limiting stenoses
- ✓ LAD physiological assessment: cFFR 0.92→ no flow-limiting stenoses

LESION PREPARATION

Pre-dilatation NC 3.0x20 mm

RESULT

No dissection TIMI flow grade 3

Kissing balloon
NC 3.0x15mm and SC 2.75x15mm

re-POT SC 4.0x8 mm

What is #FullPhysiology assessment

Epicardial disease assessment

- 1
- NHPR (≤0.89)
- cFFR (≤0.83)
- FFR (≤0.83)

Microvascular disease assessment

- 2
- IMR (>25)
- CFR (< 2.0)
- RRR (<2.0)*

*Resistive resistance ratio= $\frac{Trm*Pdr}{Thm*Pdh}$

3

Vasomotor testing

Ach

4

Post PCI repeated assessment if applicable

Angiographic result

Physiological result

Take Home Message

- ➤ Physiological assessment of epicardial stenoses should be considered as mandatory in presence of intermediate and/or complex lesions as it significantly contributes to the procedural planning process.
- The use of DCB may be contemplated for complex PCI, with the aim of simplifying the procedure and enhancing clinical outcomes through a reduction in the number of implanted stents.
- ➤ In case of DCB-PCI, physiological assessment is useful to detect the presence of flow limiting residual stenosis/dissection and verify the effectiveness of the procedure.
- ➤ Pressure catheter could be considered safer than pressure wire reducing the risk of sub-intimal rewiring during the post-PCI assessment.

#Grazie